

REAPROVEITAMENTO DA SEMENTE DE MAMÃO FORMOSA COMO INIBIDOR DE CORROSÃO

Brenda Melina Antunes Marinho¹

<u>Beatriz Paulinelli Ferreira</u>¹

Carla Pinheiro Vieira¹

Flávia Cristina Rodrigues Costa¹

Química Ambiental

RESUMO

A crescente necessidade por substâncias não poluentes e atóxicas capazes de diminuir a taxa de corrosão em materiais metálicos intensificou a pesquisa científica por inibidores naturais e sustentáveis. A espécie *Carica Papaya L.*, popularmente conhecida como "mamão formosa", além de ser pouco onerosa e abundante em território mundial e sobretudo brasileiro, apresenta altos índices flavonóides e polifenóis com ação antioxidante em suas sementes – região da fruta frequentemente descartada pelos consumidores. Dessa forma, foi avaliado neste trabalho o desempenho do extrato da semente de mamão formosa como inibidor natural de corrosão em aço carbono 1020 em solução de HCl 0,5 mol/L. Nos ensaios realizados obteve-se uma eficiência de 90% para a concentração ótima de 600 mg/L do inibidor.

Palavras-chave: Corrosão, Aço carbono 1020, Inibidor natural, Semente de mamão formosa.

INTRODUÇÃO

A corrosão é um fenômeno que acentua a degradação de materiais, bem como os impactos ambientais, dentre os quais estão a contaminação de recursos naturais, devido o derramamento de fluidos tóxicos; e a intensificação da mineração, em razão da necessidade de ampliar a exploração mineral para repor o que foi deteriorado. Tais fatores acarretam imensuráveis perdas ambientais e financeiras (GENTIL, 2012). Isto posto, a comunidade científica se dedica a encontrar meios de proteção de materiais contra agentes corrosivos.

Os inibidores de corrosão atuam, sobretudo, na cinética de reações heterogêneas responsáveis pela ação corrosiva em áreas anódicas e/ou catódicas de um material (GENTIL, 2012). A indústria utiliza inibidores sintéticos orgânicos como, por exemplo, o benzotriazol (CUSTÓDIO, 2006). Identificou-se, no entanto, que alguns inibidores sintéticos apresentavam decomposição bacteriológica e eram poluentes e tóxicos (MAINIER; SILVA, 2004; SILVA; PEREIRA; ACCIARI; 2014).

¹ Graduanda em Engenharia Químca, PUC Minas - Campus Coração Eucarístico, Departamento de Engenharia Química., beatrizpaulinelli@gmail.com.

Como resposta aos riscos de alguns inibidores sintéticos orgânicos, aprimorou-se a busca por inibidores de corrosão naturais que apresentassem eficiência anticorrosiva, obtenção acessível, baixos custos e baixa toxicidade (GENTIL, 2012; TORRES, 2016). Receberam destaque os inibidores que apresentavam em sua composição compostos flavonoides e polifenóis com ação antioxidante, podendo-se citar a espécie Carica Papaya L., característica do mamoeiro mais cultivado em nível mundial (SILVA; PEREIRA; ACCIARI; 2014). Destes, casca e sementes geralmente são descartadas. Porém, sabe-se que as sementes de mamão possuem polifenóis, como os ácidos p-cumárico, ferúlico e ácido cafeico em sua composição química (DIAS et. al., 2015).

Neste trabalho estudou-se o efeito inibidor do extrato de semente de mamão formosa na corrosão do aço carbono 1020 imerso em solução de ácido clorídrico 0,5 M, a temperatura ambiente. O estudo envolveu ensaios de polarização anódica potenciodinâmicos e de perda de massa, assim como a observação da superfície do material em microscópio eletrônico de varredura (MEV).

METODOLOGIA

Os corpos de prova de aço carbono 1020 tiveram suas superfícies lixadas, desengorduradas com acetona, lavadas com água destilada e secas.

Para a preparação do inibidor, as sementes de mamão formosa em estágio avançado de amadurecimento foram maceradas a fim de romper a película gelatinosa e imersas em água destilada a 100 °C por 1 hora. A solução foi filtrada, congelada a -80 °C e liofilizada. Assim, preparou-se soluções com concentrações de 400 mg/L, 600 mg/L, 800 mg/L e 1400 mg/L.

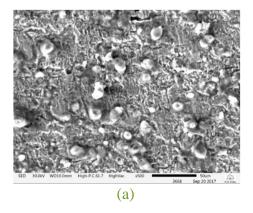
Para o ensaio de perda de massa, os corpos de prova foram pesados e imersos nas soluções de ácido clorídrico durante 48 h na ausência e na presença do inibidor. Foi realizada a decapagem mecânica antes da última pesagem. A taxa de corrosão e a eficiência de inibição foram calculadas conforme a norma ASTM G31-72 (ASTM, 2004). Fez-se a observação das superfícies em microscópio eletrônico de varredura (MEV).

Os ensaios eletroquímicos foram feitos com potenciostato PGSTAT 302N e o software NOVA 2.1.2, conduzidos em célula eletroquímica convencional. Foram realizados os ensaios de potencial de circuito aberto (OCP) e o ensaio de polarização anódica potenciodinâmica linear. Para a obtenção das curvas de polarização, foi utilizada uma velocidade de varredura de 1 mV/s, empregando-se potenciais de -250 mV para +250 mV com relação ao potencial de

circuito aberto estabelecido após 3600 s (TORRES, 2016). A eficiência de inibição foi calculada pela extrapolação de Tafel, conforme a norma ASTM G102-89 (ASTM, 2004).

RESULTADOS E DISCUSSÃO

Foram calculadas as taxas de corrosão e as eficiências de inibição do aço carbono 1020 imersos nos meios descritos. Os resultados estão expostos na Tabela 1.


Tabela 1 – Taxa de corrosão após 48 horas de imersão

Concentração	Taxa de corrosão (mm/ano)	Eficiência (%)
Solução de HCL 0,5 mol/L (sem inibidor)	18,2	-
400mg/L	2,3	87
600mg/L	1,5	90
800mg/L	1,9	89
1400mg/L	1,4	92

Fonte: Autoria própria (2018).

Pode-se observar a diminuição da taxa de corrosão das soluções com inibidor. Observouse uma redução de 90% da taxa de corrosão para a solução com concentração de 600 mg/L de inibidor de mamão formosa, cerca de 1,5 mm/ano, sem a demanda do uso de grande quantidade de inibidor.

As superfícies das amostras são apresentadas na Figura 1. Na Figura 1(a) tem-se a amostra sujeita ao teste sem inibidor. Pode-se observar uma superfície com a presença de produto de corrosão, resultante do meio ácido. A Figura 1(b) apresenta a superfície após o ensaio com 600 mg/L de inibidor. Percebe-se a menor degradação do material.

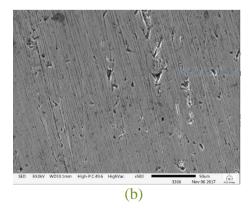


Figura 1 – Análise em MEV: (a) sem inibidor; (b) na presença do inibidor na concentração de 600 mg/L (ampliado 500 vezes).

As curvas de polarização anódica potenciodinâmica obtidas em meio sem e com 600 mg/L de inibidor são mostradas na Figura 2. A adição de inibidor reduziu as densidades de corrente anódica e catódica. Isso é explicado devido à formação de uma película protetora nas regiões anódicas e catódicas, caracterizando o inibidor como misto (DIAS et. al., 2015).

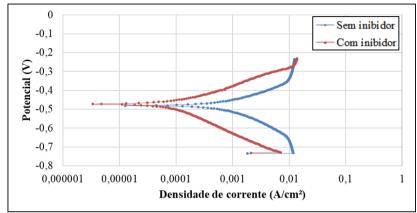


Figura 2 – Curvas de polarização na ausência e presença de 600 mg/L de inibidor.

Na Tabela 2, se encontram os potenciais de corrosão e as densidades de corrente de corrosão para os meios sem inibidor e com 600 mg/L de inibidor, respectivamente.

Tabela 2 – Resultados obtidos no ensaio eletroquímico

Meio	Taxa de corrosão (mm/ano)	Densidade de corrente de corrosão (A/m²)
Solução de HCl 0,5 mol/L (sem inibidor)	12	100
Solução de HCl 0,5 mol/L (com 600 mg/L de inibidor)	1,2	1

Fonte: Autoria própria (2018).

A eficiência de inibição na presença de 600 mg/L de inibidor foi de cerca de 90%, valor que corrobora o encontrado no ensaio de perda de massa.

CONCLUSÕES

No presente trabalho, alcançou-se uma eficiência de inibição da corrosão ácida em aço carbono 1020 de cerca de 90% para concentração de 600 mg/L do inibidor semente de mamão formosa. Mediante a realização do MEV, observou-se diminuição da corrosão na superfície das amostras com a utilização do inibidor. Constatou-se que este inibidor poderia ser aplicado para

a minimização de perdas ambientais e financeiras com corrosão e para a reposição de materiais deteriorados. Dessa forma, contribui-se para a preservação de reservas minerais – reduzindo os impactos ambientais decorrentes da mineração –, para a diminuição da poluição atmosférica e sonora e para a contaminação do solo e dos cursos de água. Por conseguinte, tem-se um inibidor natural, eficiente, sustentável, de fácil obtenção e baixo custo.

REFERÊNCIAS

AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM G102-89**: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. West Conshohocken: ASTM International, 2004.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM G31–72 (2004)**: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. West Conshohocken: ASTM International, 2004.

CUSTÓDIO, Juliana Vieira. Viabilidade do emprego do benzotriazol (BTAH) e do cloreto de dodecilamônio (DAC) como inibidores de corrosão para o aço-carbono em processos de hidrojateamento e na composição de tintas á base d'água. 2006. 151 f. Dissertação (Mestrado) - Curso de Química, Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, 2006.

DIAS, M. A.; DIAS, D. C. F. S.; BORGES, E. E. L.; DIAS, L. A. S. Qualidade e compostos fenólicos em sementes de mamão alterados pela colheita e maturação dos frutos. **Ciência Rural**, v.45, n.4, p.737-743, 2015.

GENTIL, V. Corrosão. 6 ed. Rio de Janeiro: LTC-Livros Técnicos e Científicos, Editora, 2012.

MAINIER, Fernando Benedicto; SILVA, Rosenir Rita de Cassia Moreira da. As formulações inibidoras de corrosão e o meio ambiente. **Engevista**, Niterói, v. 6, n. 3, p.106-112, dez. 2004. Mensal.

SILVA, Marcos V. F.; PEREIRA, Marinalda C.; ACCIARI, Eduardo N. Codaro e Heloisa A.. Corrosão do aço-carbono: uma abordagem do cotidiano no ensino de química. **Química Nova**, Guaratinguetá, v. 38, n. 2, p.293-296, 12 dez. 2014.

TORRES, Vanessa; CABRAL, Gabriela Borges; SILVA, Ana Carolina Gomes da; FERREIRA, Kelly Cristina Ribeiro; D'ELIA, Eliane. Ação inibidora de extratos da semente do mamão papaia na corrosão do aço-carbono 1020 em HCl 1 mol 1⁻¹. **Química Nova**, Duque de Caxias, v. 39, n. 4, p.423-430, 18 mar. 2016.